ADAR1-Mediated RNA Editing, A Novel Mechanism Controlling Phenotypic Modulation of Vascular Smooth Muscle Cells.

نویسندگان

  • Jia Fei
  • Xiao-Bing Cui
  • Jia-Ning Wang
  • Kun Dong
  • Shi-You Chen
چکیده

RATIONALE Vascular smooth muscle cell (SMC) phenotypic modulation is characterized by the downregulation of SMC contractile genes. Platelet-derived growth factor-BB, a well-known stimulator of SMC phenotypic modulation, downregulates SMC genes via posttranscriptional regulation. The underlying mechanisms, however, remain largely unknown. OBJECTIVE To establish RNA editing as a novel mechanism controlling SMC phenotypic modulation. METHODS AND RESULTS Precursor mRNAs (pre-mRNA) of SMC myosin heavy chain and smooth muscle α-actin were accumulated while their mature mRNAs were downregulated during SMC phenotypic modulation, suggesting an abnormal splicing of the pre-mRNAs. The abnormal splicing resulted from SMC marker pre-mRNA editing that was facilitated by adenosine deaminase acting on RNA 1 (ADAR1), an enzyme converting adenosines to inosines (A→I editing) in RNA sequences. ADAR1 expression inversely correlated with SMC myosin heavy chain and smooth muscle α-actin levels; knockdown of ADAR1 restored SMC myosin heavy chain and smooth muscle α-actin expression in phenotypically modulated SMC, and editase domain mutation diminished the ADAR1-mediated abnormal splicing of SMC marker pre-mRNAs. Moreover, the abnormal splicing/editing of SMC myosin heavy chain and smooth muscle α-actin pre-mRNAs occurred during injury-induced vascular remodeling. Importantly, heterozygous knockout of ADAR1 dramatically inhibited injury-induced neointima formation and restored SMC marker expression, demonstrating a critical role of ADAR1 in SMC phenotypic modulation and vascular remodeling in vivo. CONCLUSIONS Our results unraveled a novel molecular mechanism, that is, pre-mRNA editing, governing SMC phenotypic modulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Editor of Smooth Muscle Phenotype.

Vascular smooth muscle cells (SMCs) comprise the muscular layer of blood vessel walls and mediate arterial tone and blood pressure. These cells possess a remarkable plasticity that allows mature contractile myocytes to dedifferentiate, enabling vessel growth and repair. This unusual ability to dedifferentiate is especially important because SMC phenotypic modulation contributes to multiple card...

متن کامل

MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. Recently, we have found that microRNA (miRNA) miR-145 is the most abundant miRNA in normal vascular walls and in freshly isolated VSMCs; however, the role of miR-145 in VSMC phenotypic modulation and vascular diseases is currently unknown. Here...

متن کامل

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK

Phenotypic plasticity in vascular smooth muscle cells (VSMC) is necessary for vessel maintenance, repair and adaptation to vascular changes associated with aging. De-differentiated VSMC contribute to pathologies including atherosclerosis and intimal hyperplasia. As resveratrol has been reported to have cardio- protective effects, we investigated its role in VSMC phenotypic modulation. We demons...

متن کامل

Angiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury.

OBJECTIVE Phenotypic modulation of vascular smooth muscle cells represents a hallmark event in vascular injury. The underlying mechanism is not completely sorted out. We investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in vascular injury focusing on the transcriptional regulation of vascular smooth muscle cell signature genes. APPROACH AND RESULTS We re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 119 3  شماره 

صفحات  -

تاریخ انتشار 2016